Possible Products of the End-On Addition of $\mathrm{N}_{3}{ }^{-}$to $\mathbf{N}_{5}{ }^{+}$and Their Stability

Stefan Fau and Rodney J. Bartlett*
Quantum Theory Project, University of Florida, Gainesville, Florida 32611-8435

Received: October 27, 2000; In Final Form: February 12, 2001

Abstract

The recent synthesis of $\mathrm{N}_{5}{ }^{+}\left[\mathrm{AsF}_{6}\right]^{-}$suggests the addition of $\mathrm{N}_{5}{ }^{+}$and $\mathrm{N}_{3}{ }^{-}$as a possible route to N_{8}. Because homoleptic polynitrogen compounds with more than three nitrogen atoms are nearly unknown and generally not very stable, we investigated possible products of this addition reaction. We also computed transition states for various interconversions and dissociative reactions to assess the stability of the addition products. Seven structures are minima at the B3LYP/aug-cc-PVDZ and MBPT(2)/aug-cc-pVDZ levels of theory: Five diazidyldiazenes and two diazidylaminonitrenes or $\mathrm{N}_{3}-\mathrm{N}_{5}$ complexes. Gibbs free energies based on CCSD-(T)/aug-cc-pVDZ single-point calculations strongly suggest that only four of the diazidyldiazene structures are minima at higher levels of theory. We show that $\operatorname{CCSD}(\mathrm{T})$ produces good energies for molecules with some multireference character using DIP-STEOM-CCSD. In diazidyldiazenes, the loss of N_{2} from one of the azidyl end groups is as likely as the loss of both azidyl groups. Isolation of covalently bonded N_{8} from $\mathrm{N}_{5}{ }^{+}$ and $\mathrm{N}_{3}{ }^{-}$will be difficult because the most likely product has a decomposition barrier of only $18 \mathrm{kcal} / \mathrm{mol}$. It may not be formed at all, because one of the approach pathways has great potential for mutual neutralization and subsequent fragmentation.

Introduction

Molecules containing only nitrogen have been one focus of research on high energy density materials (HEDM) in recent years. Proposed molecules such as octaazacubane ${ }^{1-3}$ would release enormous amounts of energy ($\sim 55 \mathrm{kcal} / \mathrm{mol}$ of N) upon decomposition into N_{2} molecules. Additionally, N_{2}, the decomposition product, is environmentally harmless. Other, less energetic, forms of $\mathrm{N}_{8}{ }^{2,4}$ have been calculated in the last six years. For some of the N_{8} molecules, barriers toward rearrangement have been investigated. ${ }^{3,4}$ Up to now, the published work on homoleptic polynitrogen species is mostly theoretical.

In the summer of 1999 , the preparation of $\mathrm{N}_{5}^{+}\left[\mathrm{AsF}_{6}\right]^{-}$was published. ${ }^{5}$ This suggests the addition of $\mathrm{N}_{5}{ }^{+}$(1) and $\mathrm{N}_{3}{ }^{-}$(2) as an obvious route to N_{8}. Given the fact that $\mathrm{N}_{5}{ }^{+}$is only the third homoleptic polynitrogen compound producable in gram quantities, we feel that a theoretical investigation of this part of the N_{8} energy hypersurface might aid future attempts at synthesis of these compounds.

We explored all possible products of the end-on addition of $\mathrm{N}_{3}{ }^{-}$to $\mathrm{N}_{5}{ }^{+}$, based on the assumption that the approach and eventual bond formation between the two ions should be mainly governed by electrostatic attraction. Until the end of 1999, only one of the obvious reaction products, the linear $E E E^{6}$ diazidyldiazene (4), had been described in the literature. ${ }^{4 \mathrm{a}, 2 \mathrm{~d}}$ In the summer of 2000 , three more diazidyldiazene isomers had been mentioned in an article on dissociation mechanisms of known N_{8} minima. ${ }^{4 \mathrm{~b}}$
To assess the thermodynamic stability of the $\mathrm{N}_{5}{ }^{+}$plus $\mathrm{N}_{3}{ }^{-}$ addition products, we optimized a variety of transition states for rearrangement or decomposition reactions.

After describing the methods used in this work, we present some calculations on the reactants and the global minimum. These calculations show the accuracy of various methods and

[^0]guide us in choosing a level for single-point calculations. In the next section, we describe the diazidyldiazene minima and discuss their stability. Then we detail the determination of electronic energies of states with some multireference character. Finally, we present our results for diazidylaminonitrene and related complexes and summarize.

Computational Details

We used the program packages Q-Chem 1.2^{7} for B3LYP calculations and ACES 2^{8} for MBPT(2), $\operatorname{CCSD}(\mathrm{T})$ and DIP-STEOM-CCSD ${ }^{9}$ calculations. The aug-cc-pVDZ ${ }^{10}$ basis set (with spherical d functions) was used as supplied by the programs. Recent work by Tobita and Bartlett ${ }^{11}$ shows that diffuse functions are essential for the correct description of molecular symmetry of some neutral polynitrogen species. The B3LYP ${ }^{12}$ calculations were performed using a 50 shell 302 Lebedev-point grid. Except for one benchmark calculation, the $\operatorname{MBPT}(2)$ and $\operatorname{CCSD}(\mathrm{T})$ calculations included the core electrons in the correlation treatment.

Geometries were fully optimized, ${ }^{13}$ and vibrational frequency calculations or NBO^{14} analyses were performed at the B3LYP and MBPT(2) levels of theory. The assignment of transition states to minima is based on geometrical similarity and "imaginary vibrations", which give the direction of the reaction coordinate at the transition state geometry. Approximate enthalpies and Gibbs free energies were calculated using the program STTHRM. ${ }^{15}$ Improved energies were obtained by $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{B} 3 \mathrm{LYP}$ single-point calculations. These were used with B3LYP geometry and frequency data to calculate improved enthalpies and Gibbs free energies. In cases where B3LYP and MBPT(2) structures were significantly different, $\operatorname{CCSD}(\mathrm{T}) / /$ MBPT(2) single-point values were determined. To judge the performance of the single-point calculations, $\operatorname{CCSD}(\mathrm{T})$ optimizations and frequency calculations using the aug-cc-pVDZ and aug-cc-pVTZ basis sets were performed for $\mathrm{N}_{2}, \mathrm{~N}_{3}{ }^{-}$, and $\mathrm{N}_{5}{ }^{+}$. Heats of formation are usually determined by isodesmic

Figure 1. Structures and partial charges (NBO, B3LYP/aug-cc-pVDZ) of $\mathrm{N}_{3}{ }^{-}, \mathrm{N}_{5}{ }^{+}$, and 3 .
TABLE 1: Heats of Formation, Gibbs Free Energies of Formation (298.15 K, 1 bar), and Number of Imaginary Frequencies i for the Reactants and Azidylpentazole (3) Using the aug-cc-pVDZ Basis Set

method ${ }^{a}$	$\mathrm{N}_{3}{ }^{-}, D_{\infty h}$			$\mathrm{N}_{5}{ }^{+}, C_{2 v}$			3, C_{S}		
	i	$\Delta_{\mathrm{f}} H$	$\Delta_{\mathrm{f}} G$	i	$\Delta_{\mathrm{f}} \mathrm{H}$	$\Delta_{\mathrm{f}} G$	i	$\Delta_{\mathrm{f}} \mathrm{H}$	$\Delta_{\mathrm{f}} G$
B3	0	34.5	39.8	0	335.9	350.1	0	195.5	226.2
M2	0	39.7	44.9	0	348.9	363.0	0	221.2	251.6
CC	0	57.2	62.5	0	354.3	368.3			
C3	0	50.1	55.4	0	349.2	363.2			
C3//B3		50.0	55.3		349.7	363.9		224.1	254.8
C3//M2		50.6	55.8		350.5	364.7		225.7	256.2
C3//B3-C3		50.9	56.3		351.1	365.4		226.4	257.2
C3//M2-C3		50.5	55.7		350.4	364.5		225.5	256.0
C3/TZ+	0	45.7	51.0						
C3/TZ+//B3		45.6	50.9		344.5	358.7			
C3/TZ+//M2		46.0	51.3		344.1	358.2			
C3/TZ+//B3-C3/TZ +		45.8	51.1		344.8	359.0			
C3/TZ+//M2-C3/TZ+		47.8	53.0		347.1	361.2			
expt b		48.5							

reactions. In this case, the design of isodesmic reactions is difficult and somewhat ambiguous because many N_{8} structures show significant conjugation or unusual bond lengths. Therefore, heats of formation and Gibbs free energies of formation were calculated directly, relative to N_{2}. Because of the rather different bonding situation in N_{2} and N_{8}, correlation effects have to be treated accurately to obtain good heats of formation or Gibbs free energies.

Throughout the rest of the paper, we are going to discuss CCSD(T)/aug-cc-pVDZ//B3LYP/aug-cc-pVDZ Gibbs free energies, if not specified otherwise.

Transition states involving homolytic bond breaking are usually thought to benefit from a multireference treatment like MR-CISD. When homolytic bond breaking occurs in a closed shell molecule and radical fragments are created, the multireference character of the wave function gradually increases along the reaction coordinate. In single reference CCSD, this can lead to one or more large T2-amplitudes that could be corrected by triple and quadruple excitations.

With this caveat, we report $\operatorname{CCSD}(\mathrm{T})$ energies of transition states for homolytic bond breaking. The CCSD wave functions at the transition state geometries have one T_{2} amplitude of $0.2-$ 0.4 , each, exceeding the usual reliability threshold of ~ 0.1. We show their reliability (in this case) by calculating the electronic energy in an indirect way. First, we calculate the electronic ground state and some excited states at the transition state geometry by DIP-STEOM-CCSD. ${ }^{9}$ This method calculates the CCSD energy of a reference state with two electrons more than the state of interest. The energies of the state of interest and some excited states are derived by removing two electrons from the reference state in a CI-like fashion. For that reason, multireference character of the state of interest is less of a problem. The accuracy of energy differences to the reference
state is estimated to be $0.16 \mathrm{eV} .{ }^{9}$ Consequently, we may expect an accuracy of better than $\sim 0.3 \mathrm{eV}(\sim 7 \mathrm{kcal} / \mathrm{mol})$ for energy differences between the state of interest and the excited states. To get an electronic energy, we add the DIP-STEOM-CCSD energy difference to the $\operatorname{CCSD}(\mathrm{T})$ energy of a suitable excited state. This excited state has to be the lowest state of its electronic symmetry and it must be well-described by a single determinant.

Reactants and the Global Minimum

To propose addition mechanisms for $\mathrm{N}_{3}{ }^{-}$and $\mathrm{N}_{5}{ }^{+}$, we need to know their electrostatic potential or, as an approximation, their partial charges. Figure 1 shows that both terminal atoms of $\mathrm{N}_{3}{ }^{-}$have strong negative charges while the central atom is positive. In $\mathrm{N}_{5}{ }^{+}$the terminal atoms as well as N 2 and N 4 are positively charged, whereas the central atom carries a negative charge. The partial charges in azidylpentazole ${ }^{16}(\mathbf{3})$ are generally smaller but, especially in the azidyl group, still significant.

Based on the assumption of an electrostatically governed approach, N 6 of $\mathrm{N}_{3}{ }^{-}$can form bonds with $\mathrm{N} 1, \mathrm{~N} 2$, or N 2 and N 4 of $\mathrm{N}_{5}{ }^{+}$. There may be two sets of three conformers each from addition to N 1 , distinguished by $E(\mathbf{4}-\mathbf{6})$ or Z configuration (7-9) of the central double bond. Addition to N2 may lead to three conformers, whereas bond formation with N 2 and N 4 gives rise to a single conformer. The partial charge argument also points to addition of N7 to N3, but we did not find a stable molecule from that reaction. We found a singlet biradical structure of very high energy that lost an N_{2} molecule during optimization. Inspection of the lowest unoccupied orbitals of $\mathrm{N}_{5}{ }^{+}$shows three orbitals with similar energies. One has the biggest coefficients on the terminal atoms, pointing to the inside of the "V", whereas the others have big coefficients on the inside of N3 and above and below the molecular plane at the terminal atoms. Because the electrostatic argument does not favor attack

TABLE 2: Bond Lengths of $\mathbf{1 - 3}$ Using the aug-cc-pVDZ Basis Set

a		8-7	7-6	6-1	1-2	2-3	3-4	4-5	5-1
B3	1	1.190	1.190						
M2	1	1.222	1.222						
CC	1	1.194	1.194						
C3	1	1.206	1.206						
C3'	1	1.186	1.186						
expt ${ }^{\text {b }}$	1	1.188	1.188						
B3	2				1.119	1.308	1.308	1.119	
M2	2				1.144	1.315	1.315	1.144	
CC	2				1.121	1.338	1.338	1.121	
C3	2				1.131	1.339	1.339	1.131	
C3'	2	c			1.116	1.324	1.324	1.116	
B3	3	1.133	1.261	1.388	1.329	1.306	1.346	1.308	1.322
M2	3	1.151	1.280	1.390	1.336	1.338	1.347	1.337	1.331

to N3, attack to N1 and bidentate out-of-plane attack to N1 and N5 seem to be most promising.

The data in Table 1 show that the experimental heat of formation of $\mathrm{N}_{3}{ }^{-}$is bracketed by the $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVDZ and $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVTZ values. The aug-cc-pVDZ value is $1.6 \mathrm{kcal} / \mathrm{mol}$ higher than the experimental value, whereas the aug-cc-pVTZ value is $2.8 \mathrm{kcal} / \mathrm{mol}$ lower. Therefore, we will try to give energies of $\operatorname{CCSD}(\mathrm{T})$ /aug-cc- pVDZ quality in this paper. We tested two single-point approaches to enthalpies and free energies because the N_{8} structures are too big to make $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVDZ optimizations routinely practicable. In the first approach, thermodynamic data are derived from frequencies and geometries at the B3LYP or MBPT(2) level, whereas electronic energies are determined by $\operatorname{CCSD}(\mathrm{T})$ singlepoint calculations. Polynitrogen species and N_{2} are treated the same way. In the second approach, denoted $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{B} 3 \mathrm{LYP}-$ $\operatorname{CCSD}(\mathrm{T})$, the treatment of the polynitrogen species is identical, but geometries and frequencies for N_{2} are determined at the CCSD(T) level.

The enthalpies and free energies in $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVDZ single-point calculations (Table 1) vary by less than $2.4 \mathrm{kcal} /$ mol. The CCSD(T)/aug-cc-pVDZ//B3LYP/aug-cc-pVDZ values are closest to $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVDZ. At the $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVTZ level, the differences between single-point calculations are about twice as large. Here, both types of B3LYP/aug-ccpVDZ based single-point values are very close to the CCSD-(T)/aug-cc-pVTZ reference. Because the $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{B} 3 \mathrm{LYP}$ values seem to give the best overall results, we choose CCSD-(T)/aug-cc-pVDZ//B3LYP/aug-cc-pVDZ for our N_{8} single-point calculations.

In the case of $\mathrm{N}_{3}{ }^{-}$, comparison of calculated and experimental bond lengths (Table 2) is possible. $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVTZ and B3LYP/aug-cc-pVDZ deviate only $0.002 \AA$ from the gas-phase data. $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVDZ and MBPT(2)/aug-cc-pVDZ are longer by 0.018 and $0.034 \AA$.

Table 2 shows that MBPT(2)/aug-cc-pVDZ calculates most bonds 0.02 or $0.03 \AA$ longer than B3LYP. The differences are
greatest for bonds that are short or have a high bond order. In contrast to this trend, MBPT(2) results for $\mathbf{3}$ show nearly equal bond lengths for the pentazole ring, whereas the B3LYP bond lengths vary by $0.04 \AA$. At the MBPT(2) level, the pentazole ring seems to be more aromatic than at B3LYP.

A recent paper on $\mathrm{N}_{2}{ }^{17}$ shows that the experimental geometry and vibrational frequency are reproduced much better at the $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVTZ level than at $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVDZ. The same seems to be true for $\mathrm{N}_{3}{ }^{-}$. For N_{2} and $\mathrm{N}_{3}{ }^{-}$, the difference between experimental and calculated bond distances rises as $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVTZ \leq B3LYP/aug-cc-pVDZ $<$ CCSD/aug-cc-pVDZ $\leq \operatorname{CCSD}(T) /$ aug-cc-pVDZ $<$ MBPT(2)/ aug-cc-pVDZ.

For $\mathrm{N}_{5}{ }^{+}$, the situation is a little different: because no experimental geometry is available, we take $\operatorname{CCSD}(\mathrm{T})$-fc/aug-cc-pVTZ values as a reference. Both B3LYP and MBPT(2) calculate shorter $\mathrm{N} 2-\mathrm{N} 3$ bonds and larger $\mathrm{N} 2-\mathrm{N} 3-\mathrm{N} 4$ bond angles. $\operatorname{MBPT}(2)$ is better with these parameters, but it calculates the $\mathrm{N} 1-\mathrm{N} 2$ triple bond $0.03 \AA$ longer than the reference, whereas B3LYP is nearly on the spot. CCSD comes closest to the reference values (Table 3).

A comparison of the bond angles at different levels of theory shows that B3LYP and MBPT(2) differ by up to 2.5° although the difference is usually below 1°. In $\mathrm{N}_{5}{ }^{+}$, CCSD comes closest to the $\operatorname{CCSD}(\mathrm{T})$-fc/aug-cc-pVTZ reference. $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc$\mathrm{pVDZ}, \mathrm{MBPT}(2)$, and B3LYP differ increasingly more.

Products of Addition to N1

There are two sets of isomers, distinguished by the $E(\mathbf{4}-\mathbf{6})$ or Z configuration (7) of the $\mathrm{N} 1-\mathrm{N} 2$ double bond. The conformers are characterized by the E or Z configuration ${ }^{6}$ of the adjacent single bonds (see Figure 2). The Gibbs free energies (Table 4) with respect to azidylpentazole ${ }^{4,2 \mathrm{~d}}(\mathbf{3})$ range between 13 and $17 \mathrm{kcal} / \mathrm{mol}$. The $x E x$ conformers $4-6$ differ in free energy by about $2 \mathrm{kcal} / \mathrm{mol}$. Although the $g Z E$ and $Z Z E$ structures ($\mathbf{8 a}, \mathbf{b}$) are (shallow) minima at B3LYP and MBPT(2), respectively, single-point calculations indicate that $\mathbf{8 b}$ is a transition state at the $\operatorname{CCSD}(\mathrm{T})$ level: the $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{B} 3 \mathrm{LYP}$ electronic energies fall monotonically from $\mathbf{8 b}$ over $\mathbf{8 a}$ and $7-\mathbf{8}$ to 7 . The $Z Z Z$ conformer does not exist. The closest approximation, $g Z g$ diazidyldiazene $8-\mathbf{8}^{\prime}$, is a transition state for the degenerate rearrangement of $g Z E(\mathbf{8 a})$ to $E Z g$ ($\mathbf{8} \mathbf{a}^{\prime}$) diazidyldiazene.

We also calculated two transition states for rotation around the N6-N1 bond. In 4-5, the barrier to rotation $\left(\Delta_{\mathrm{a}} G_{298}{ }^{\circ}\right)$ is lower than $6.5 \mathrm{kcal} / \mathrm{mol}$, allowing reaction at room temperature. We expect a second transition state, 5-6, to exist with a similar barrier. Furthermore, $\mathbf{7 - 8}$ transforms 8a (or the MBPT(2) minimum $\mathbf{8 b}$) into 7 with a barrier of $1 \mathrm{kcal} / \mathrm{mol}$. As mentioned above, at the $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVDZ level of theory, only $\mathbf{8 b}$ might be a stationary point (a transition state).

According to chemical intuition, addition of $\mathrm{N}_{3}{ }^{-}$to the terminal atom of $\mathrm{N}_{5}{ }^{+}$should produce diazidyldiazene with an E configuration of the central double bond. Therefore, 7 is

TABLE 3: Bond Angles of 2 and 3 Using the aug-cc-pVDZ Basis Set

a		$8-7-6$	7-6-1	6-1-2	$1-2-3$	$2-3-4$	$3-4-5$	$4-5-1$	5-1-2
B3	2				166.0	111.9	166.0		
M2	2				167.2	110.2	167.2		
CC	2				167.1	107.7	167.1		
C3	2				166.0	108.0	166.0		
C3'	2				167.1	108.5	167.1		
B3	3	169.4	111.1	126.7	103.9	109.3	109.5	103.9	113.3
M2	3	169.7	108.7	125.7	103.1	109.4	109.9	103.0	114.7

5

6

4-5

8a

Figure 2. Structures (B3LYP/aug-cc-pVDZ) of diazidyldiazenes and transition states.
accessible by inversion of the $\mathrm{N} 6-\mathrm{N} 1-\mathrm{N} 2$ angle in 5 or rotation of the azidyl group around the $\mathrm{N} 1-\mathrm{N} 2$ double bond in 4. Because breaking a NN double bond should be much less for favorable than inverting the $\mathrm{N} 6-\mathrm{N} 1-\mathrm{N} 2$ angle, we searched the inversion transition state only. In a series of partial optimizations with constraint on the N6-N1-N2 angle, $\mathbf{5}$ lost N_{2} before $\mathrm{N} 6-\mathrm{N} 1-\mathrm{N} 2$ came close to 180°. It seems like E-diazidyldiazenes cannot be converted directly into Z-diazidyldiazenes.

To judge the stability of diazidyldiazenes, we optimized two transition states, $\mathbf{4 - 0}$ and $\mathbf{7 - 0}$. They feature simultaneous breaking of the longest and weakest bonds in 4 and 7, the N2N 3 and N1-N6 bonds. These bonds are the weakest by the empirical bond length \leftrightarrow bond strength correlation, the force constants, and the overlap weighted NAO bond orders. The simultaneous bond breaking is presumably due to an instability
of the $\mathrm{N}_{5}{ }^{\bullet}$ radical, causing its dissociation into N_{2} and $\mathrm{N}_{3}{ }^{\bullet}$. At $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVDZ//MBPT(2)/aug-cc-pVDZ, the dissociation reaction of $\mathbf{4}$ has a barrier of $18 \mathrm{kcal} / \mathrm{mol}$; for $7, \Delta_{a} G_{298}{ }^{\circ}$ is $15 \mathrm{kcal} / \mathrm{mol}$. These transition states have some multireference character, but the $\operatorname{CCSD}(\mathrm{T})$ energies are (in this case) reliable as will be shown later.

Another dissociation mechanism, without open-shell problems at the TS, has recently been described. ${ }^{4 b}$ Here an azidyl endgroup loses N_{2} and leaves N_{6}. To compute Gibbs free energies we re-optimized $\mathbf{4 - 0 (2)}$ and $\mathbf{7 - 0 (2)}$. We found that they have not C_{1} but C_{S} symmetry at the B3LYP/aug-cc-pVDZ level. The Gibbs free energies of activation are 19 and $16 \mathrm{kcal} / \mathrm{mol}$, very similar to the barriers for loosing both azidyl groups (Figure 3).

A comparison of the data in Table 4 shows that the Gibbs free energies at the B3LYP level are $2-4 \mathrm{kcal} / \mathrm{mol}$ lower than

Figure 3. Gibbs free energies of diazidyldiazenes relative to azidylpentazole 3.

TABLE 4: Diazidyldiazenes and Transition States, Number of Imaginary Frequencies i, Enthalpies, and Gibbs Free Energies (298.15 K, 1 bar) Relative to Azidylpentazole 3 at B3LYP/aug-cc-pVDZ, MBPT(2)/aug-cc-pVDZ and CCSD or CCSD(T)/aug-cc-pVDZ//B3LYP/aug-cc-pVDZ ${ }^{a}$

	sym	B3LYP			MBPT(2)			$\begin{aligned} & \text { CCSD// } \\ & \text { B3LYP } \end{aligned}$		$\begin{aligned} & \text { CCSD(T)// } \\ & \text { B3LYP } \end{aligned}$	
		i	ΔH	ΔG	i	ΔH	ΔG	ΔH	ΔG	ΔH	ΔG
4a	$C_{2 h}$	0	10.6	9.8				14.6	13.9	14.7	14.0
4b	$C_{2 h}$				0	18.2	17.5	$14.2{ }^{\text {b }}$	$13.6{ }^{\text {b }}$	$14.3{ }^{\text {b }}$	$13.6{ }^{\text {b }}$
5	C_{S}	0	13.7	12.3	0	19.2	18.1	17.3	15.9	16.9	15.5
6	$C_{2 h}$	0	16.0	14.9	0	19.8	19.1	19.1	18.1	18.5	17.4
7a	$C_{2 v}$	0	9.5	8.6				14.6	13.7	13.7	12.8
7b	$C_{2 v}$				0	15.9	15.2	$14.3{ }^{\text {b }}$	$13.6{ }^{\text {b }}$	$13.3{ }^{\text {b }}$	$12.6{ }^{\text {b }}$
8a	C_{1}	0	18.3	16.6		c		21.9	20.2	20.4	18.7
8b	C_{S}	1	17.8	17.5	0	22.1	20.3	22.5	22.1	20.7	20.4
4-5	C_{1}	1	18.9	18.4	1	24.9	24.7	21.0	20.6	20.9	20.5
7-8	C_{1}	1	18.2	18.0	1	22.9	23.0	21.3	21.1	20.0	19.8
8-8'	C_{2}	1	28.5	28.3							
5-7	C_{S}		d								
4-0a	$C_{2 h}$	1	39.4	36.9				48.8	46.3	24.1	21.6
4-0b	$C_{2 h}$				1	41.2	37.3	$47.2^{\text {b }}$	$43.3{ }^{\text {b }}$	$35.7{ }^{\text {b }}$	$31.8{ }^{\text {b }}$
7-0a	$C_{2 v}$	1	36.1	31.6				43.6	39.1	12.6	8.1
7-0b	$C_{2 v}$				1	34.6	31.5	$43.4{ }^{\text {b }}$	$40.3{ }^{\text {b }}$	$30.7{ }^{\text {b }}$	27.6^{b}
4-0(2)	C_{S}	1	30.2	28.5				34.4	32.8	34.5	32.8
7-0(2)	C_{S}	1	27.9	26.1				31.2	29.3	30.8	28.9

${ }^{a}$ CCSD or CCSD(T) electronic energies with B3LYP geometry and vibrational data. ${ }^{b} \mathrm{CCSD}$ or $\mathrm{CCSD}(\mathrm{T})$ electronic energies with MBPT(2) geometry and vibrational data. ${ }^{c}$ Optimized to C_{S} at MBPT(2). ${ }^{d}$ Dissociates before $\mathrm{N} 2-\mathrm{N} 1-\mathrm{N} 6$ reaches 180°.
the $\operatorname{CCSD}(\mathrm{T})$ values. The $\operatorname{MBPT}(2)$ values are $2-4 \mathrm{kcal} / \mathrm{mol}$ higher than the $\operatorname{CCSD}(\mathrm{T})$ values. The CCSD values are less than $2 \mathrm{kcal} / \mathrm{mol}$ higher. This comparison excludes the transition states for homolytic bond breaking, 4-0 and 7-0. In their case, MBPT(2) values are $5 \mathrm{kcal} / \mathrm{mol}$ higher than $\operatorname{CCSD}(\mathrm{T})$, whereas the B3LYP values are about $20 \mathrm{kcal} / \mathrm{mol}$ too high. The CCSD energies are $12-28 \mathrm{kcal} / \mathrm{mol}$ too high, depending on which geometries are used. For the minima 4 and 7, choosing B3LYP or MBPT(2) geometries makes little difference.

Looking directly at the Gibbs free energies of activation (Table 5), all methods of computation give good results for rotations and heterolytic bond breaking. B3LYP has the biggest average deviation from the $\operatorname{CCSD}(\mathrm{T})$ barriers with $+2.3 \mathrm{kcal} /$ mol. For the homolytic bond breaking, only MBPT(2) comes close to the $\operatorname{CCSD}(\mathrm{T})$ values. The other methods overestimate the barriers by about $8-14 \mathrm{kcal} / \mathrm{mol}$.

The B3LYP bond lengths (Table 6a) of $\mathbf{4 - 8}$ show a common pattern for all of the conformers. The terminal N8-N7 and N4-

TABLE 5: Gibbs Free Energies of Activation at 298 K and 1 bar in kcal/mol.

	B3LYP	MBPT(2)	CCSD//	CCSD(T)//
$\mathbf{4} \rightarrow \mathbf{4 - 5}$	8.6	7.2	6.7	6.5
$\mathbf{7} \rightarrow \mathbf{7 - 8}$	9.4	7.8	7.4	7.0
$\mathbf{4} \rightarrow \mathbf{4}-\mathbf{0}$	27.1	19.8	29.7^{a}	18.2^{a}
$\mathbf{7} \rightarrow \mathbf{7}-\mathbf{0}$	23.0	16.3	26.7^{a}	15.0^{a}
$\mathbf{4} \rightarrow \mathbf{4} \mathbf{- 0}(\mathbf{2})$	18.7		18.9	18.8
$\mathbf{7} \rightarrow \mathbf{7}-\mathbf{0}(\mathbf{2})$	17.5		15.6	16.1

${ }^{a}$ MBPT(2) geometry and vibrational data. Barriers for the B3LYP geometries are about the same at CCSD and much lower (+7.6 and $-4.7 \mathrm{kcal} / \mathrm{mol})$ at $\operatorname{CCSD}(\mathrm{T})$.

TABLE 6: Diazidyldiazenes and Transition States
(A) Bond Lengths in \AA at B3LYP/aug-cc-pVDZ

	$8-7$	$7-6$	$6-1$	$1-2$	$2-3$	$3-4$	$4-5$
$\mathbf{4}$	1.135	1.259	1.396	1.251	1.396	1.259	1.135
$\mathbf{5}$	1.133	1.274	1.387	1.253	1.399	1.258	1.135
$\mathbf{6}$	1.133	1.272	1.390	1.255	1.390	1.272	1.133
$\mathbf{7}$	1.135	1.257	1.416	1.242	1.416	1.257	1.135
$\mathbf{8 a}^{a}$	1.136	1.261	1.417	1.243	1.421	1.256	1.134
$\mathbf{8 b}$	1.134	1.280	1.378	1.248	1.425	1.252	1.135
$\mathbf{8}-\mathbf{8}^{b}$	1.138	1.256	1.451	1.235	1.451	1.256	1.138
$\mathbf{4 - 5}$	1.140	1.247	1.452	1.243	1.398	1.264	1.132
$\mathbf{7 - \mathbf { 8 } ^ { d }}$	1.140	1.246	1.467	1.236	1.413	1.262	1.132
$\mathbf{4 - 0}$	1.158	1.217	2.031	1.133	2.031	1.217	1.158
$\mathbf{7 - 0}$	1.163	1.210	2.116	1.123	2.116	1.210	1.163
$\mathbf{4 - 0 (2)}$	1.117	1.605	1.265	1.262	1.427	1.249	1.140
$\mathbf{7 - 0 (2)}$	1.115	1.629	1.272	1.257	1.459	1.246	1.139

(B) Bond Lengths in \AA at MBPT(2)/aug-cc-pVDZ

	$8-7$	$7-6$	$6-1$	$1-2$	$2-3$	$3-4$	$4-5$
$\mathbf{4}$	1.154	1.275	1.406	1.273	1.406	1.275	1.154
$\mathbf{5}$	1.157	1.282	1.397	1.278	1.406	1.275	1.154
$\mathbf{6}$	1.157	1.283	1.395	1.284	1.395	1.283	1.157
$\mathbf{7}$	1.155	1.272	1.420	1.265	1.420	1.272	1.155
$\mathbf{8 b}$	1.164	1.287	1.379	1.274	1.423	1.267	1.155
$\mathbf{4 - 5}$	1.158	1.265	1.467	1.267	1.403	1.278	1.153
$\mathbf{7 - 8}$	1.160	1.260	1.482	1.259	1.411	1.278	1.154
$\mathbf{4}-\mathbf{0}$	1.169	1.255	1.876	1.168	1.876	1.255	1.169
$\mathbf{7 - 0}$	1.170	1.252	1.862	1.159	1.862	1.252	1.170

[^1]N5 bonds are a bit shorter than the terminal NN bond in $\mathrm{H}_{3} \mathrm{C}-$ $\mathrm{N}_{3}(1.143 \AA)$, whereas the $\mathrm{N} 7-\mathrm{N} 6$ and $\mathrm{N} 3-\mathrm{N} 4$ bonds are slightly longer than the inner NN bond of $\mathrm{H}_{3} \mathrm{C}-\mathrm{N}_{3}(1.236 \AA)$. This indicates a slightly stronger localization of the terminal π

TABLE 7: Diazidyldiazenes and Transition States
(A) Bond Angles in Degrees at B3LYP/aug-cc-pVDZ

	sym	$8-7-6$	$7-6-1$	$6-1-2$	$1-2-3$	$2-3-4$	$3-4-5$
$\mathbf{4}$	$C_{2 h}$	170.4	109.9	108.2	108.2	109.9	170.4
$\mathbf{5}$	C_{S}	170.2	115.8	114.3	108.9	110.1	170.7
$\mathbf{6}$	$C_{2 h}$	170.4	115.5	114.9	114.9	115.5	170.4
$\mathbf{7}$	$C_{2 v}$	171.5	109.9	115.4	115.4	109.9	171.5
$\mathbf{8 a}$	C_{1}	168.5	118.2	123.0	116.1	109.9	172.5
$\mathbf{8 - \mathbf { 8 } ^ { \prime }}$	C_{2}	171.7	113.9	121.7	121.7	113.9	171.7
$\mathbf{8 - \mathbf { 8 } ^ { \prime }}$	C_{S}	162.8	123.2	126.8	115.8	110.4	173.1
$\mathbf{4 - 5}$	C_{1}	170.2	109.5	109.0	109.1	111.9	173.0
$\mathbf{7 - 8}$	C_{1}	171.3	109.4	116.3	117.5	112.7	173.4
$\mathbf{4 - 0}$	$C_{2 h}$	178.9	99.6	107.0	107.0	99.6	178.9
$\mathbf{7 - 0}$	$C_{2 v}$	178.7	102.2	118.8	118.8	102.2	178.7
$\mathbf{4 - 0 (2)}$	C_{S}	145.1	109.6	120.3	107.1	109.9	172.0
$\mathbf{7 - 0 (2)}$	C_{S}	146.0	108.6	123.9	109.6	110.3	173.7

(B) Bond Angles in Degrees at MBPT(2)/aug-cc-pVDZ

	sym	$8-7-6$	$7-6-1$	$6-1-2$	$1-2-3$	$2-3-4$	$3-4-5$
$\mathbf{4}$	$C_{2 h}$	170.3	108.0	106.9	106.9	108.0	170.3
$\mathbf{5}$	C_{S}	170.8	114.1	112.5	107.7	108.0	170.6
$\mathbf{6}$	$C_{2 h}$	170.7	113.7	113.4	113.4	113.7	170.7
$\mathbf{7}$	$C_{2 v}$	170.6	108.4	113.7	113.7	108.4	170.6
$\mathbf{8 b}$	C_{S}	161.7	123.7	124.5	114.1	109.3	171.9
$\mathbf{4 - 5}$	C_{1}	172.9	108.7	107.1	107.7	107.7	170.2
$\mathbf{7 - 8}$	C_{1}	173.2	109.2	114.1	114.7	108.0	170.1
$\mathbf{4 - 0}$	$C_{2 h}$	176.8	97.3	103.9	103.9	97.3	176.8
$\mathbf{7 - 0}$	$C_{2 v}$	175.7	101.6	116.4	116.4	101.6	175.7

bonds. The $\mathrm{N} 1-\mathrm{N} 2$ bond is slightly longer than the NN double bond in trans $-\mathrm{H}_{3} \mathrm{CN}=\mathrm{NCH}_{3}(1.240 \AA)$. Finally, the $\mathrm{N} 6-\mathrm{N} 1$ and $\mathrm{N} 2-\mathrm{N} 3$ bonds are significantly shorter than the $\mathrm{N}-\mathrm{N}$ single bond in $C_{2 h}\left(\mathrm{H}_{3} \mathrm{C}\right)_{2} \mathrm{~N}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}(1.481 \AA)$. This may be attributed to a weak π bond, because of delocalization of the N 3 and N6 π lone pairs into the $\mathrm{N} 1-\mathrm{N} 2 \pi$ antibond. At the MBPT(2) level (Table 6b), the bonds are up to $0.03 \AA$ longer, showing a bigger increase in bond length with higher bond order (Table 7).

Comparing the structures shows that the $\mathrm{N} 1-\mathrm{N} 2, Z$ conformers have shorter $\mathrm{N} 1-\mathrm{N} 2$ bonds ($0.01 \AA$), longer $\mathrm{N} 6-\mathrm{N} 1$ and $\mathrm{N} 2-\mathrm{N} 3$ bonds $(0.02 \AA)$, and larger bond angles $\mathrm{N} 6-\mathrm{N} 1-\mathrm{N} 2$ and $\mathrm{N} 1-\mathrm{N} 2-\mathrm{N} 3$ than the E conformers. Z conformations at the N6-N1 or N2-N3 bonds are accompanied by longer N7N6 or N3-N4 bonds ($0.01 \AA$) and a similar increase of adjacent bond angles.

The transition states $\mathbf{8}-\mathbf{8}^{\prime}, \mathbf{4 - 5}$, and $\mathbf{7 - 8}$ show a clear increase in $\mathrm{N} 1-\mathrm{N} 6$ bond length and a slight equilibration of the N6-N7 and N7-N8 bond lengths. This can be attributed to the loss of bonding π interactions across the $\mathrm{N} 1-\mathrm{N} 6$ bond and reorganization in the N6, N7, and N8 azidyl group. The transition states $\mathbf{4 - 0}$ and $\mathbf{7 - 0}$ have nearly broken N6-N1 and $\mathrm{N} 2-\mathrm{N} 3$ bonds. At B3LYP, these bonds are $\sim 0.2 \AA$ longer than at MBPT(2). Both transition states show strong equilibration of the bonds in the azidyl groups. Finally, 4-0 (2) and 7-0 (2) lead to N_{6} and N_{2}. The $\mathrm{N} 6-\mathrm{N} 7$ bonds are only 0.12 and $0.14 \AA$ longer than in $C_{2 h}\left(\mathrm{H}_{3} \mathrm{C}\right)_{2} \mathrm{~N}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$, indicating very early transition states.

The electronic structures of $\mathbf{3 - 8}$, described in terms of natural localized molecular orbitals (NLMOs, see the Supporting Information), are as similar as their bond lengths. There aretwo triple bonds ($\mathrm{N} 8-\mathrm{N} 7$ and $\mathrm{N} 4-\mathrm{N} 5$), an $\mathrm{N} 1-\mathrm{N} 2$ double bond, and two π lone pairs at N6 and N3. Each π lone pair is strongly delocalized: $\sim 20 \%$ into the terminal π antibond and 7% into the $\mathrm{N} 1-\mathrm{N} 2 \pi$ antibond. There is a σ lone pair at every atom except N7 and N4. The σ bonds to N7 and N4 are somewhat polar ($\sim 57 \%$ of the bonding electron pair at N4/N7 and 43\%

TABLE 8: Diazidyldiazenes and Transition States, Natural Atomic Charges in e^{-}at B3LYP/aug-ce-pVDZ

	sym	N 8	N 7	N 6	N 1	N 2	N 3	N 4	N 5
$\mathbf{4}$	$C_{2 h}$	0.03	0.23	-0.20	-0.06	-0.06	-0.20	0.23	0.03
$\mathbf{5}$	C_{S}	0.05	0.22	-0.20	-0.02	-0.12	-0.19	0.23	0.03
$\mathbf{6}$	$C_{2 h}$	0.05	0.22	-0.20	-0.08	-0.08	-0.20	0.22	0.05
$\mathbf{7}$	$C_{2 v}$	0.03	0.23	-0.23	-0.03	-0.03	-0.23	0.23	0.03
$\mathbf{8 a}$	C_{1}	0.02	0.21	-0.22	0.00	-0.03	-0.27	0.24	0.04
$\mathbf{8 - \mathbf { 8 } ^ { \prime }}$	C_{S}	0.04	0.21	-0.21	0.00	-0.05	-0.27	0.24	0.03
$\mathbf{8 - \mathbf { 8 } ^ { \prime }}$	C_{2}	0.02	0.20	-0.24	0.02	0.02	-0.24	0.20	0.02
$\mathbf{4 - 5}$	C_{1}	-0.01	0.21	-0.22	-0.03	-0.04	-0.20	0.23	0.05
$\mathbf{7 - 8}$	C_{1}	-0.02	0.21	-0.23	0.00	0.00	-0.24	0.24	0.05
$\mathbf{4 - 0}$	$C_{2 h}$	-0.02	0.15	-0.15	0.03	0.03	-0.15	0.15	-0.02
$\mathbf{7 - 0}$	$C_{2 v}$	-0.03	0.13	-0.13	0.04	0.04	-0.13	0.13	-0.03
$\mathbf{4 - 0 (2)}$	C_{S}	0.13	0.11	-0.08	-0.00	-0.15	-0.21	0.22	-0.01
$\mathbf{7 - 0 (2)}$	C_{S}	0.13	0.12	-0.10	0.01	-0.12	-0.26	0.23	-0.01

at the other atom). The other σ bonds are nonpolar. In the nonplanar structures, the π interactions are interrupted at the twisted bonds.

The partial charges (natural charges; Table 8) are quite large for a homoleptic neutral molecule: ~ 0.23 at N7/N4 and -0.20 to -0.27 at $\mathrm{N} 6 / \mathrm{N} 3$. The other atoms are only slightly charged. These partial charges have the same pattern as the formal charges used in the Lewis structure derived from the NLMOs. Despite the considerable atomic charges, the azidyl end groups carry only a small charge. It is slightly positive in the planar structures and becomes slightly negative when the azidyl group is rotated out of the molecular plane.

The covalent (overlap-weighted NAO) bond orders (see the Supporting Information) show a pattern similar to the NLMOs: they are highest for the triple bonds (~ 1.67), lower for the central double bond (~ 1.24), and lowest for the N6-N1 and $\mathrm{N} 2-\mathrm{N} 3 \sigma$ bonds (~ 0.88). The covalent bond order of the N7-N6 and N3-N4 bonds is higher (~ 1.20), because of strong delocalization of both π lone pairs. Compared to the reference molecule ${ }^{18} \mathrm{H}_{3} \mathrm{C}-\mathrm{N}_{3}$, the terminal bonds of the azidyl group are a little stronger, whereas the inner bonds are a little weaker. The $\mathrm{N} 1-\mathrm{N} 2$ double bond is weaker than the double bond in trans $-\mathrm{H}_{3} \mathrm{C}-\mathrm{N}=\mathrm{N}-\mathrm{CH}_{3}$, too, whereas the $\mathrm{N} 1-\mathrm{N} 6$ and $\mathrm{N} 2-\mathrm{N} 3$ single bonds are stronger than the $\mathrm{N}-\mathrm{N}$ bond in $\left(\mathrm{H}_{3} \mathrm{C}\right)_{2} \mathrm{~N}-$ $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$.

Calculating Reliable Energies for States with Some Multireference Character

Some of the transition states in this work describe homolytic bond breaking. In the case of closed shell singlet states, the products are open shells, and the multireference character gradually increases during the reaction. This is illustrated by the data in Table 9 (the breaking bonds are longer in 7-0a than in $\mathbf{7 - 0 b}$). The $\operatorname{MBPT}(2)$ and $\operatorname{CCSD}(\mathrm{T})$ energies of activation become smaller with increasing multireference character, whereas the CCSD energy of activation remains virtually unchanged. This may be interpreted as a consequence of the perturbation not being small anymore so that MBPT(2) and the perturbative triples correction in $\operatorname{CCSD}(\mathrm{T})$ become unreliable.

TABLE 9: Largest \mathbf{T}_{2} Amplitudes, RHF Orbital Energy Differences $\Delta \epsilon$ in eV , and Electronic Energies of Activation in kcal/mol

	$\mathbf{7 - 0 b}$				$\mathbf{7 - 0 a}$		
	$\Delta \epsilon$	$\operatorname{max~} \mathrm{T}_{2}$	$\Delta_{a} E$		$\Delta \epsilon$	$\operatorname{max~} \mathrm{~T}_{2}$	$\Delta_{a} E$
$\operatorname{MBPT}(2)$	8.1	-0.13	21.0		4.5	-0.38	6.7
CCSD	8.1	-0.18	31.4		4.5	-0.39	31.4
$\operatorname{CCSD}(\mathrm{~T})$	8.1	-0.18	19.7		4.5	-0.39	1.4

Figure 4. Two ways to calculate the electronic energy of a state with some multireference character.

TABLE 10: Ground and Relevant Excited States of 4-0, $7-0,10-0$, and $11-0$, Determined by DIP-STEOM-CCSD/ aug-cc-pVDZ at the B3LYP/aug-cc-pVDZ and MBPT(2)/ aug-cc-pVDZ Optimized Geometries ${ }^{a}$

	$\%$ active b			el. en.	electrons removed from
	state	ΔE			
$\mathbf{4 - 0 a}$	${ }^{1} \mathrm{~A}_{\mathrm{g}}$	99.98	-436.71774	$36.1 \%-1\left[\mathrm{~A}_{\mathrm{g}}\right],-1\left[\mathrm{~A}_{\mathrm{g}}\right]$	0.0
				$63.2 \%-1\left[\mathrm{~B}_{\mathrm{u}}\right],-1\left[\mathrm{~B}_{\mathrm{u}}\right]$	
	${ }^{3} \mathrm{~B}_{\mathrm{u}}$	99.98	-436.71246	$98.1 \%-1\left[\mathrm{~A}_{\mathrm{g}}\right],-1\left[\mathrm{~B}_{\mathrm{u}}\right]$	5.3
$\mathbf{4 - 0 b}$	${ }^{1} \mathrm{~A}_{\mathrm{g}}$	99.93	-436.68618	$17.4 \%-1\left[\mathrm{~A}_{\mathrm{g}},-1\left[\mathrm{~A}_{\mathrm{g}}\right]\right.$	0.0
				$81.7 \%-1\left[\mathrm{~B}_{\mathrm{u}}\right],-1\left[\mathrm{~B}_{\mathrm{u}}\right]$	
	${ }^{3} \mathrm{~B}_{\mathrm{u}}$	99.95	-436.65723	$96.8 \%-1\left[\mathrm{~A}_{\mathrm{g}}\right],-1\left[\mathrm{~B}_{\mathrm{u}}\right]$	29.0
				$2.8 \%-1\left[\mathrm{~A}_{\mathrm{g}}\right],-2\left[\mathrm{~B}_{\mathrm{u}}\right]$	
$\mathbf{7 - 0 a}$	${ }^{1} \mathrm{~A}_{1}$	100.00	-436.73510	$40.9 \%-1\left[\mathrm{~B}_{2}\right],-1\left[\mathrm{~B}_{2}\right]$	0.0
				$58.7 \%-1\left[\mathrm{~A}_{1}\right],-1\left[\mathrm{~A}_{1}\right]$	
	${ }^{3} \mathrm{~B}_{2}$	99.99	-436.73278	$99.1 \%-1\left[\mathrm{~A}_{1}\right],-1\left[\mathrm{~B}_{2}\right]$	2.3
$\mathbf{7 - 0 b}$	${ }^{1} \mathrm{~A}_{1}$	99.94	-436.69459	$19.3 \%-1\left[\mathrm{~B}_{2}\right],-1\left[\mathrm{~B}_{2}\right]$	0.0
				$80.0 \%-1\left[\mathrm{~A}_{1}\right],-1\left[\mathrm{~A}_{1}\right]$	
	${ }^{3} \mathrm{~B}_{2}$	99.92	-436.67093	$97.7 \%-1\left[\mathrm{~A}_{1}\right],-1\left[\mathrm{~B}_{2}\right]$	23.7
$\mathbf{1 0 - 0}$	${ }^{1} \mathrm{~A}^{\prime}$	99.89	-436.71296	$67.9 \%-1\left[\mathrm{~A}^{\prime}\right],-1\left[\mathrm{~A}^{\prime}\right]$	0.0
				$7.1 \%-1\left[\mathrm{~A}^{\prime}\right],-2\left[\mathrm{~A}^{\prime}\right]$	
				$24.7 \%-2\left[\mathrm{~A}^{\prime}\right],-2\left[\mathrm{~A}^{\prime}\right]$	
	${ }^{3} \mathrm{~A}^{\prime}$	99.91	-436.70427	$99.7 \%-1\left[\mathrm{~A}^{\prime}\right],-2\left[\mathrm{~A}^{\prime}\right]$	8.7
$\mathbf{1 1 - 0}$	${ }^{1} \mathrm{~A}_{1}$	99.98	-436.71893	$33.3 \%-1\left[\mathrm{~B}_{2}\right],-1\left[\mathrm{~B}_{2}\right]$	0.0
				$66.4 \%-1\left[\mathrm{~A}_{1}\right],-1\left[\mathrm{~A}_{1}\right]$	
	${ }^{3} \mathrm{~B}_{2}$	99.99	-436.71297	$99.5 \%-1\left[\mathrm{~A}_{1}\right],-1\left[\mathrm{~B}_{2}\right]$	6.0

${ }^{a}$ The energy is given in hartree, $\Delta \mathrm{E}$ in mhartree. The extra electrons in the DIP reference occupy orbitals of $\mathrm{Bu}, \mathrm{A} 1, \mathrm{~A}^{\prime}$, and A 1 symmetry. The HOMO -1 orbitals (HOMO of the neutral species) are of Ag, $\mathrm{B} 2, \mathrm{~A}^{\prime}$, and B2 symmetry. ${ }^{b}$ Percentage of the DIP vector consisting of IP-EOM-CCSD vectors included in the similarity transformation. It should be bigger than ca. $95 \% .^{c}$ Contributions greater than 2.5%. The notation $-n[L]$ means the n-highest occupied orbital of irrep L, whereas $n[L]$ indicates the n-lowest unoccupied orbital of irrep L.

To provide reliable energies for states with multireference character, we used a different approach (b in Figure 4). First, we used DIP-STEOM-CCSD to calculate the energies of the lowest singlets and triplets of each symmetry that are describable by removing two electrons from a double anion reference state.

In all double anions, the two extra electrons occupied what had been the LUMO of the neutral molecule. The biggest CCSD T_{2} amplitudes in these double anion states were smaller than 0.06 , showing that these reference states are well described. Then we looked at the description of the states that are derived by removing two electrons from the reference in a CI-like fashion. These are the ground state and some of the excited states of N_{8} in the transition state geometry determined at the B3LYP or MBPT(2) level. In Table 10, we see that the singlet ground states have moderate to strong multireference character. The triplet excited states seem to be single-reference states. The IP-EOM-CC vectors used to describe these states have no double excitation coefficients bigger than 0.05 . None of the IP-EOMCC vectors used in the similarity transformation has less than 80% single excitation character. Excited states of other symmetries have been calculated, too, but are not presented here because they have strong multireference character and are not suitable for CCSD or $\operatorname{CCSD}(\mathrm{T})$ calculations. In the third step, we calculated UHF based $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVDZ energies for the triplet states. All T_{2} amplitudes are smaller than 0.06 , so $\operatorname{CCSD}(\mathrm{T})$ should give good results. Finally, we combine the $\operatorname{CCSD}(\mathrm{T})$ energies of the triplet states with the DIP-STEOMCCSD energy difference between singlet and triplet states to get approximate energies for the singlets with some multireference character. These values are shown in Table 11. The difference between energies calculated by the DIP-STEOM route and energies calculated by UHF-based $\operatorname{CCSD}(\mathrm{T})$ for the singlet states is 3 mhartree ($\sim 2 \mathrm{kcal} / \mathrm{mol}$) or less. This agreement is seen for all six geometries, leading us to believe that the error in the DIP-STEOM-CCSD energy differences is smaller than the expected maximum of $7 \mathrm{kcal} / \mathrm{mol}$.

The agreement between the DIP-STEOM-CCSD and CCSD descriptions of the multireference singlets (Table 12) is also good: the dominant contributions agree to better than 2% for the MBPT(2) structures and better than 4% for the B3LYP structures. The difference between DIP-STEOM-CCSD derived energies and CCSD energies for the multireference singlet states is much larger: about $12 \mathrm{kcal} / \mathrm{mol}$ for the $\mathrm{MBPT}(2)$ structures and $29-35 \mathrm{kcal} / \mathrm{mol}$ for the B3LYP structures, where CCSD has significantly larger T_{2} amplitudes. This shows that CCSD energies may become questionable when the largest T_{2} amplitudes exceed 0.1 ; that inclusion of higher excitation clusters corrects this misbehavior and that (at least in these cases) perturbative triple excitations are sufficient to solve the problem.

To confirm that our conclusions on the single-reference

TABLE 11: Energies (in hartree) of the Singlet Ground States Calculated Directly or Derived from Excited State Calculations and DIP-STEOM-CCSD Energy Differences ${ }^{a}$

	state	ref	max T_{2}	"excitation" from	to	$\Delta E(\mathrm{DIP})$	energy $-\Delta E(\mathrm{DIP})$	
							CCSD	CCSD(T)
4-0a	${ }^{1} \mathrm{~A}_{\mathrm{g}}$	RHF	0.33	$-1\left[\mathrm{~A}_{\mathrm{g}}\right]-1\left[\mathrm{~A}_{\mathrm{g}}\right]$	$1\left[\mathrm{~B}_{u}\right] 1\left[\mathrm{~B}_{u}\right]$		-436.6877	-436.8014
	${ }^{3} \mathrm{~B}_{\mathrm{u}}$	UHF	0.05			0.0053	-436.7358	-436.8041
	${ }^{3} \mathrm{~B}_{\mathrm{u}}$	QRHF	0.07			0.0053	-436.7340	-436.8028
4-0b	${ }^{1} \mathrm{~A}_{\mathrm{g}}$	RHF	0.18	$-1\left[\mathrm{~A}_{\mathrm{g}}\right]-1\left[\mathrm{~A}_{\mathrm{g}}\right]$	$1\left[\mathrm{~B}_{\mathrm{u}}\right] 1\left[\mathrm{~B}_{\mathrm{u}}\right]$		-436.6895	-436.7849
	${ }^{3} \mathrm{~B}_{\mathrm{u}}$	UHF	0.06			0.0290	-436.7067	-436.7819
7-0a	${ }^{1} \mathrm{~A}_{1}$	RHF	0.39	$-1\left[\mathrm{~B}_{2}\right]-1\left[\mathrm{~B}_{2}\right]$	$1\left[\mathrm{~A}_{1}\right] 1\left[\mathrm{~A}_{1}\right]$		-436.6970	-436.8207
	${ }^{3} \mathrm{~B}_{2}$	UHF	0.04			0.0023	-436.7543	-436.8212
	${ }^{3} \mathrm{~B}_{2}$	QRHF	0.05			0.0023	-436.7526	-436.8194
7-0b	${ }^{1} \mathrm{~A}_{1}$	RHF	0.18	$-1\left[\mathrm{~B}_{2}\right]-1\left[\mathrm{~B}_{2}\right]$	$1\left[\mathrm{~A}_{1}\right] 1\left[\mathrm{~A}_{1}\right]$		-436.6959	-436.7933
	${ }^{3} \mathrm{~B}_{2}$	UHF	0.05			0.0237	-436.7157	-436.7904
10-0	$1 \mathrm{~A}^{\prime}$	RHF	0.26	$-1\left[\mathrm{~A}^{\prime}\right]-1\left[\mathrm{~A}^{\prime}\right]$	$1\left[\mathrm{~A}^{\prime}\right] 1\left[\mathrm{~A}^{\prime}\right]$		-436.6958	-436.7993
	$3 A^{\prime}$	UHF	0.04			0.0087	-436.7319	-436.8002
11-0	${ }^{1} \mathrm{~A}_{1}$	RHF	0.31	$-1\left[\mathrm{~B}_{2}\right]-1\left[\mathrm{~B}_{2}\right]$	$1\left[\mathrm{~A}_{1}\right] 1\left[\mathrm{~A}_{1}\right]$		-436.6924	-436.8033
	${ }^{3} \mathrm{~B}_{2}$	UHF	0.04			0.0060	-436.7382	-436.8058

${ }^{a}$ Very large T_{2} amplitudes are characterized. ${ }^{b}$ The notation $-n[L]$ means the n-highest occupied orbital of irrep L, whereas $n[L]$ indicates the n-lowest unoccupied orbital of irrep L.

TABLE 12: Distribution of the Electrons onto the HOMO and LUMO of the Neutral Closed Shell Reference State as Derived from the Dominant Contributions of the CCSD T ${ }_{2}$ Amplitudes or the DIP-STEOM Description of the Singlet State

	DIP-STEOM-CCSD			CCSD	
	HOMO	LUMO		HOMO	LUMO
$\mathbf{4 - 0 a}$	$64 \% \mathrm{~A}_{\mathrm{g}}$	$37 \% \mathrm{~B}_{\mathrm{u}}$		$67 \% \mathrm{~A}_{\mathrm{g}}$	$33 \% \mathrm{~B}_{\mathrm{u}}$
$\mathbf{4 - 0 b}$	$83 \% \mathrm{~A}_{\mathrm{g}}$	$17 \% \mathrm{~B}_{\mathrm{u}}$		$82 \% \mathrm{~A}_{\mathrm{g}}$	$18 \% \mathrm{~B}_{\mathrm{u}}$
$\mathbf{7 - 0 a}$	$59 \% \mathrm{~B}_{2}$	$41 \% \mathrm{~A}_{1}$		$61 \% \mathrm{~B}_{2}$	$39 \% \mathrm{~A}_{1}$
$\mathbf{7 - 0 b}$	$81 \% \mathrm{~B}_{2}$	$20 \% \mathrm{~A}_{1}$		$82 \% \mathrm{~B}_{2}$	$18 \% \mathrm{~A}_{1}$
$\mathbf{1 0}-\mathbf{0}$	$75 \% \mathrm{~A}^{\prime}$	$32 \% \mathrm{~A}^{\prime}$		$74 \% \mathrm{~A}^{\prime}$	$26 \% \mathrm{~A}^{\prime}$
$\mathbf{1 1 - 0}$	$67 \% \mathrm{~B}_{2}$	$34 \% \mathrm{~A}_{1}$		$69 \% \mathrm{~B}_{2}$	$31 \% \mathrm{~A}_{1}$

character of the triplets are not tainted by significant differences between the occupied orbitals that the neutral and dianionic references have in common, we also calculated two of the triplet
states based on QRHF. We removed two electrons from the two orbitals of the dianionic reference state that dominate the DIP-STEOM description of the triplet state before conducting the CCSD part of the calculation. The resulting energies (Table 11) are only slightly higher than the UHF-based energies, as are the largest T_{2} amplitudes. This shows that the QRHF reference is nearly as good as the UHF reference and, in conclusion, that the occupied orbitals of the dianionic reference correspond well to those of the neutral reference.

Products of Addition to $\mathbf{N} 2$ or to N2 and N4

At the B3LYP or MBPT(2) level, this reaction gives rise to the loosely bound $\mathrm{N}_{3}-\mathrm{N}_{5}$ complexes 10 and 11b (Figure 5). Complex 11a is of the aminonitrene structure type that was previously reported not to be a minimum. ${ }^{4}$ In 10 and 11b, the azidyl group coordinates to N 2 of a distorted N_{5} unit. Complex

99

Figure 5. Structures (B3LYP/aug-cc-pVDZ) of branched N_{8}.

TABLE 13: Enthalpies and Gibbs Free Energies (298.15 K , 1 bar) Relative to Azidylpentazole (3) and Number of Imaginary Frequencies i at B3LYP/aug-cc-pVDZ, MBPT(2)/aug-cc-pVDZ, and CCSD or CCSD(T)/cc-pVDZ//B3LYP/aug-cc-pVDZ ${ }^{a}$

${ }^{a}$ CCSD or CCSD (T) energies with B3LYP geometry and vibrational data. ${ }^{b} C_{S}$ optimized to $C_{2 v}$ at B3LYP. ${ }^{c}$ MBPT(2) geometry and vibrational data, max $\mathrm{T}_{2}=-0.13$, direct comparison of $\operatorname{CCSD}(\mathrm{T})$ electronic energies shows 11 b is $7.3 \mathrm{kcal} / \mathrm{mol}$ higher in electronic energy than 11a. ${ }^{d}$ Using the electronic energies derived from the ${ }^{3} \mathrm{~A}^{\prime}$ state in Table $12 .{ }^{e}$ Using the electronic energies derived from the ${ }^{3} \mathrm{~B}_{2}$ state in Table 12 .

Figure 6. Gibbs free energies of diazidylaminonitrene and related complexes relative to azidylpentazole 3.

11a is the symmetric version of 11b with elongated bonds to the azidyl groups. $\operatorname{CCSD}(\mathrm{T})$ single-point calculations show that 11b is $7 \mathrm{kcal} / \mathrm{mol}$ higher in electronic energy than 11a.

As will be shown in the following paragraphs, 10, 11a, and 11b are shallow minima at the B3LYP and MBPT(2) levels only. The transition state $\mathbf{1 0 - 5}$ transforms complex $\mathbf{1 0}$ into ZEEdiazidyldiazene with a "barrier" of $-4 \mathrm{kcal} / \mathrm{mol} .10-\mathbf{0}$ is the transition state for dissociation into $\mathrm{N}_{2}+2 \mathrm{~N}_{3}{ }^{\bullet}$. The Gibbs free energy of activation is $-13 \mathrm{kcal} / \mathrm{mol}$, although, on the basis of the experiences with homolytic bond dissociation in diazidyldiazenes, this value may be too low. The reaction of $\mathbf{1 0}$ to $\mathbf{1 1}$ has a barrier of $3 \mathrm{kcal} / \mathrm{mol}$. The fact that the $\operatorname{CCSD}(\mathrm{T})$ electronic energies fall from $\mathbf{9 9}, \mathbf{1 0}-\mathbf{1 0}^{\prime}$, or $\mathbf{1 0}-\mathbf{1 1}$ over $\mathbf{1 0}$ to $\mathbf{1 0 - 5}$ suggests that there is no stationary point similar to $\mathbf{1 0}$ on the $\operatorname{CCSD}(\mathrm{T})$ hypersurface and that the reaction path from 99 will end either at 5 or at $\mathrm{N}_{2}+2 \mathrm{~N}_{3}{ }^{\circ}$.

Complex 99 presumably is a point on the symmetric approach path of $\mathrm{N}_{3}{ }^{-}$and $\mathrm{N}_{5}{ }^{+}$with a free energy of $51 \mathrm{kcal} / \mathrm{mol}$, relative to 3. It has two imaginary frequencies, leading to $\mathbf{1 0}-\mathbf{1 0}^{\prime}$ and 10. 10-10' is a transition state for the transfer of the azidyl group from N 2 to N 4 . This rearrangement is essentially a rotation of the azidyl group around the $\mathrm{N} 6-\mathrm{N} 3$ axis with a barrier of $7 \mathrm{kcal} / \mathrm{mol}$.

The situation for 11, which might be formed by addition of $\mathrm{N}_{3}{ }^{-}$to the outside of the N 2 atom in $\mathrm{N}_{5}{ }^{+}$, is similar to that of $\mathbf{1 0}$. Conversion of $\mathbf{1 1}$ to $\mathbf{1 0}$ has a Gibbs free energy of activation of $2 \mathrm{kcal} / \mathrm{mol}$. The transition state $\mathbf{1 1 - 6}$ converts the complex

11 to ZEZ-diazidyldiazene $\mathbf{6}$ without a significant barrier. Our best result for the barrier is $-0.1 \mathrm{kcal} / \mathrm{mol}$, but because the B3LYP and MBPT(2) structures differ significantly, there is some doubt about the accuracy of this value. Like 10, 11a may also dissociate into $\mathrm{N}_{2}+2 \mathrm{~N}_{3}{ }^{\circ}$. The Gibbs free energy of activation at the B3LYP transition state (11-0) is lower than $-17 \mathrm{kcal} / \mathrm{mol}$. Because the $\operatorname{CCSD}(\mathrm{T})$ electronic energies fall from $\mathbf{1 0 - 1 1}$ over 11a to $\mathbf{1 1 - 6}$ or $\mathbf{1 1 - 0}$, the symmetric diazidylaminonitrene structure does not seem to be a minimum at the $\operatorname{CCSD}(\mathrm{T})$ level (Figure 6).

A comparison of the data in Table 13 shows that both B3LYP and MBPT(2) energies differ by as much as $17 \mathrm{kcal} / \mathrm{mol}$ from the $\operatorname{CCSD}(\mathrm{T})$ values. The CCSD values differ by up to $8 \mathrm{kcal} /$ mol, often opposite to B3LYP.

The B3LYP bond lengths (Table 14a) vary significantly between the structures. All structures except 11a can be seen as coupled N_{5} and N_{3} units. In $\mathbf{1 0}$, the shape of the N_{5} unit is similar to that of N 1 to N 5 in the diazidyldiazene 4 , except that the $\mathrm{N} 1-\mathrm{N} 2$ distance is nearly as short as the $\mathrm{N} 4-\mathrm{N} 5$ distance. The N2-N6 distance is so big that the distances in the N6 to N8 azidyl group are intermediate between $\mathrm{H}_{3} \mathrm{C}-\mathrm{N}_{3}$ and $\mathrm{N}_{3}{ }^{\circ}$. This is true for $\mathbf{1 0}-\mathbf{1 0}^{\prime}$ and $\mathbf{9 9}$, too, but the N_{5} unit is symmetric with bond lengths slightly bigger than in $\mathrm{N}_{5}{ }^{+}$. The averaged bond lengths in $\mathbf{1 0}$ are nearly identical to their counterparts in $\mathbf{1 0}-\mathbf{1 0}^{\prime}$. The only exception is the N6-N2 distance, because of the different coordination mode (Table 15).

In the transition state $\mathbf{1 0 - 1 1}$, the $\mathrm{N} 2-\mathrm{N} 3$ bond is elongated

TABLE 14: "Branched" \mathbf{N}_{8} Molecules

(A) Bond Lengths in \AA at B3LYP/aug-cc-pVDZ

	$8-7$	$7-6$	$6-2$	$1-2$	$2-3$	$3-4$	$4-5$	$1-8$
$\mathbf{1 0}$	1.158	1.211	1.981	1.150	1.402	1.271	1.128	
$\mathbf{1 1 a}$	1.138	1.248	1.572	1.156	1.572	1.248	1.138	
$\mathbf{1 0 - 5}$	1.192	1.183	2.254	1.166	1.392	1.275	1.128	2.086
$\mathbf{1 0 - 0}$	1.162	1.208	2.173	1.118	1.845	1.227	1.150	
$\mathbf{1 0}-\mathbf{1 1}$	1.144	1.237	1.702	1.148	1.539	1.251	1.139	
$\mathbf{1 1 - 6}$	1.190	1.194	2.075	1.169	1.399	1.280	1.129	2.101
$\mathbf{1 1 - 0}$	1.161	1.216	2.042	1.116	2.042	1.216	1.161	
$\mathbf{1 0 - 1 0}$	1.157	1.219	2.149	1.136	1.336	1.336	1.136	
$\mathbf{9 9}$	1.160	1.207	2.144	1.134	1.326	1.326	1.134	

(B) Bond Lengths in \AA at MBPT(2)/aug-cc-pVDZ

	$8-7$	$7-6$	$6-2$	$1-2$	$2-3$	$3-4$	$4-5$	$1-8$
$\mathbf{1 0}$	1.194	1.226	2.137	1.181	1.364	1.300	1.146	2.490
$\mathbf{1 1 b}$	1.194	1.224	2.099	1.177	1.379	1.306	1.150	2.474
$\mathbf{1 0}-\mathbf{1 1}$	1.196	1.222	2.116	1.165	1.437	1.282	1.153	2.463
$\mathbf{1 1 - 6}$	1.230	1.181	2.416	1.202	1.406	1.298	1.153	1.921
$\mathbf{9 9}$	1.195	1.228	2.033	1.176	1.327	1.327	1.176	2.033

because of the missing π interaction, whereas the $\mathrm{N} 2-\mathrm{N} 6$ bond is shortened. Consequentially, both azidyl groups are more similar than in 10. In 11, both azidyl groups are identical with $\mathrm{N} 2-\mathrm{N} 3$ and $\mathrm{N} 2-\mathrm{N} 6$ distances that are only slightly longer than the NN single bond in $\mathrm{N}_{2}\left(\mathrm{CH}_{3}\right)_{4}$. In $\mathbf{1 0 - 5}$ and $\mathbf{1 1 - 6}$, the transition states to linear ZEE- and ZEZ-diazidyldiazene and the N2-N6 and N1-N8 distances are nearly identical, and the N6 to N8 azidyl group is very similar to the N_{3} radical. Transition states $\mathbf{1 0}-\mathbf{0}$ and $\mathbf{1 1 - 0}$ have shapes very similar to 10 and 11. Only bond lengths and angles involving the breaking bonds vary. The already weak N2-N6 and N2-N3 bonds have lengthened considerably, whereas the other bonds are distinctly more similar to those in N_{2} and $\mathrm{N}_{3}{ }^{\circ}$.

A comparison of MBPT(2) and B3LYP geometries shows that the complexes are less tightly bound at the MBPT(2) level. Complex 10 is a bit more similar to noninteracting N_{5} and N_{3} units, and 11b has only C_{S} symmetry with a N2-N6 distance similar to $\mathbf{1 0}$.

The electronic structures of the complexes, described in terms of NLMOs (see the Supporting Information), show distorted N_{5} and N_{3} units. The N_{5} units show $\mathrm{N} 2-\mathrm{N} 3$ and $\mathrm{N} 3-\mathrm{N} 4$ single bonds and N1-N2 and N4-N5 triple bonds. However, in contrast to the usual pattern, the $\mathrm{N} 1-\mathrm{N} 2 \pi$ bond with the lobes in the $\mathrm{N} 1-\mathrm{N} 2-\mathrm{N} 3$ plane is polarized toward the terminal atom. In $\mathbf{1 0} \mathbf{- 1 0}$ and $\mathbf{9 9}$, the equivalent $\mathrm{N} 4-\mathrm{N} 5 \pi$ bond is polarized to the terminal atom, too. This is due to the interaction of N2 (and N 4 in $\mathbf{1 0}-\mathbf{1 0}{ }^{\prime}$ and $\mathbf{9 9}$) with the loosely bound azidyl group.

In the $C_{2 v}$ structure 11a, there are the usual triple and single bonds of the azidyl groups, two single bonds between them and N 2 and an $\mathrm{N} 1-\mathrm{N} 2$ double bond. $\mathrm{N} 1, \mathrm{~N} 3$, and N6 have two lone pairs, whereas N5 and N8 have one. The π lone pair at N 1 is interacting strongly with the $\mathrm{N} 2-\mathrm{N} 3$ and $\mathrm{N} 2-\mathrm{N} 6 \sigma$ antibonds.

The partial charges (Table 16) show a general pattern of negatively charged N_{3} and positively charged N_{5} units. The magnitude of the partial charge decreases with the distance between units from 0.46 in 99 to 0.0 in 11. This can be interpreted as a tendency to go from $\mathrm{N}_{5}-\mathrm{N}_{3}$ to $\mathrm{N}_{5}{ }^{+}$and $\mathrm{N}_{3}{ }^{-}$ with the initial increase of distance.

The overlap-weighted NAO bond orders (see the Supporting Information) show weak $\mathrm{N} 2-\mathrm{N} 6$ bonds. They are weaker than the reference trans- $\left(\mathrm{H}_{3} \mathrm{C}\right)_{2} \mathrm{~N}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ for every structure. The $\mathrm{N} 1-\mathrm{N} 2$ bonds are stronger than that in trans $-\mathrm{H}_{3} \mathrm{C}-\mathrm{N}=\mathrm{N}-\mathrm{CH}_{3}$,

TABLE 15: "Branched" \mathbf{N}_{8} Molecules

(A) Bond Angles in Degrees at B3LYP/aug-cc-pVDZ							
	$8-7-6$	$7-6-2$	$6-2-1$	$6-2-3$	$1-2-3$	$2-3-4$	$3-4-5$
$\mathbf{1 0}$	168.2	91.6	121.2	107.8	131.0	111.9	167.5
$\mathbf{1 1 a}$	178.6	106.1	131.7	96.7	131.7	106.1	178.6
$\mathbf{1 0 - 5}$	158.8	78.9	110.1	121.8	128.1	109.9	169.6
$\mathbf{1 0 - 0}$	177.3	90.5	126.4	107.3	126.3	104.2	178.6
$\mathbf{1 0 - 1 1}$	176.9	103.0	129.6	99.5	130.7	107.5	173.6
$\mathbf{1 1 - 6}$	153.5	84.0	113.5	112.4	134.1	110.7	170.8
$\mathbf{1 1 - 0}$	179.1	100.0	132.4	95.2	132.4	100.0	179.1
$\mathbf{1 0 - 1 0}$	178.4	109.8	123.3	93.7	142.8	110.2	142.8
$\mathbf{9 9}$	180.0	148.5	124.6	90.8	144.6	115.4	144.6

(B) Bond Angles in Degrees at MBPT(2)/aug-cc-pVDZ

	$8-7-6$	$7-6-2$	$6-2-1$	$6-2-3$	$1-2-3$	$2-3-4$	$3-4-5$
$\mathbf{1 0}$	166.9	82.7	118.3	107.4	134.3	108.5	166.9
$\mathbf{1 1 b}$	166.2	82.9	119.5	99.6	141.0	107.9	169.4
$\mathbf{1 0 - 1 1}$	165.7	82.8	119.0	103.3	137.6	106.5	171.1
$\mathbf{1 1 - 6}$	164.2	-	-	-	124.5	110.2	170.1
$\mathbf{9 9}$	180.0	147.1	126.4	90.9	142.7	112.5	142.7

TABLE 16: "Branched" \mathbf{N}_{8} Molecules, Natural Charges at B3LYP/aug-cc-pVDZ

	N8	N7	N6	N1	N2	N3	N4	N5
$\mathbf{1 0}$	-0.10	0.17	-0.36	0.03	0.09	-0.18	0.24	0.12
$\mathbf{1 1 a}$	0.03	0.21	-0.24	-0.10	0.10	-0.24	0.21	0.03
$\mathbf{1 0}-\mathbf{1 1}$	-0.01	0.19	-0.28	-0.02	0.09	-0.20	0.20	0.03
$\mathbf{1 0}-\mathbf{5}$	-0.17	0.15	-0.22	0.05	0.01	-0.18	0.24	0.12
$\mathbf{1 0 - 0}$	-0.06	0.13	-0.21	0.07	0.02	-0.16	0.17	0.04
$\mathbf{1 1 - 6}$	-0.18	0.13	-0.14	-0.01	0.04	-0.18	0.22	0.10
$\mathbf{1 1 - 0}$	-0.03	0.13	-0.14	0.04	0.03	-0.14	0.13	-0.03
$\mathbf{1 0 - 1 0}$	-0.13	0.16	-0.42	0.11	0.17	-0.18	0.17	0.11
$\mathbf{9 9}$	-0.16	0.19	-0.49	0.11	0.20	-0.17	0.20	0.11

whereas the azidyl groups show bond orders between those of $\mathrm{H}_{3} \mathrm{C}-\mathrm{N}_{3}$ and $\mathrm{N}_{3}{ }^{-}$.

Summary and Conclusions

We investigated possible products of the end-on addition of $\mathrm{N}_{3}{ }^{-}$to $\mathrm{N}_{5}{ }^{+}$and searched for transition states to assess their stability. We optimized geometries at the B3LYP/aug-cc-pVDZ and MBPT(2)/aug-cc-pVDZ levels of theory. Single-point energies were calculated at $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVDZ. To get data that are more relevant, we approximated enthalpies and Gibbs free energies at room temperature and 1 bar.

Analysis of the partial charges of $\mathrm{N}_{5}{ }^{+}$and $\mathrm{N}_{3}{ }^{-}$as well as inspection of the lowest unoccupied orbitals of $\mathrm{N}_{5}{ }^{+}$suggest that addition to the inside of the terminal nitrogen atoms is most likely. This would produce diazidyldiazenes. Other likely modes of attack are an approach of the azide anion along the C 2 axis toward the inside of N3 (99) or a bidentate out-of-plane approach that connects N6 to N1 and N8 to N5. The former may lead to neutralization and fragmentation, whereas the latter mode of attack might lead to octazole or octaazapentalene.

We found several minimum structures that possibly arise from end-on addition of $\mathrm{N}_{3}{ }^{-}$to $\mathrm{N}_{5}{ }^{+}$. Lowest in energy are the chain structures, arising from bond formation between the terminal atoms of $\mathrm{N}_{3}{ }^{-}$and $\mathrm{N}_{5}{ }^{+}$. Lowest in Gibbs free energy is $E Z E^{6}-$ diazidyldiazene (7), $13 \mathrm{kcal} / \mathrm{mol}$ higher than azidylpentazole, the currently accepted global minimum of the N_{8} hypersurface. Although the ZZE rotamer $\mathbf{8}$ is a (shallow) minimum at lower levels of theory, $\operatorname{CCSD}(\mathrm{T})$ single-point calculations indicate that this structure is a transition state. The three rotamers of E-diazidyldiazene (4, 5, and $\mathbf{6}$) have Gibbs free energies 14$17 \mathrm{kcal} / \mathrm{mol}$ higher than azidylpentazole. Conversion of $\mathbf{4}$ to 5 has a barrier of $\sim 6 \mathrm{kcal} / \mathrm{mol}$ and we believe the transition state
between 5 and 6 to be of similar height. E - and Z-diazidyldiazenes are not connected by inversion of the N2-N1-N6 angle. The molecule dissociates before the angle reaches 180°. On the basis of chemical intuition, we believe that $\mathbf{4}$ is more likely to be formed than 7.

The diazidyldiazenes are composed of two azidyl groups attached to the central diazene unit. The single bonds connecting these groups are weakest by the criteria of bond length, force constants, and overlap weighted NAO bond orders. Simultaneously breaking these bonds has barriers of 18 and $15 \mathrm{kcal} /$ mol for 4 and 7, respectively. Breaking the stronger inner bond of one azidyl group is as easy. The calculated barrier for dissociation into N_{2} and N_{6} is $19 \mathrm{kcal} / \mathrm{mol}$ for 4 and $16 \mathrm{kcal} /$ mol for 7. Unfortunately, we cannot expect to isolate any N_{6}, because the free energy of reaction, $\sim-80 \mathrm{kcal} / \mathrm{mol}$, is much larger than the barrier toward dissociation of N_{6} into $3 \mathrm{~N}_{2}(25-$ $30 \mathrm{kcal} / \mathrm{mol}^{19}$).

Addition of $\mathrm{N}_{3}{ }^{-}$to one of the next-to-terminal atoms of $\mathrm{N}_{5}{ }^{+}$ does not result in stable structures. Although there are two minima ($\mathbf{1 0}$ and 11a/11b) at B3LYP and MBPT(2), the CCSD(T) electronic energies and Gibbs free energies of the transition states toward lower energy structures are lower than those of $\mathbf{1 0}$ or 11. Any molecule with a structure like $\mathbf{1 0}$ or $\mathbf{1 1}$ will immediately react to $\mathrm{N}_{2}+2 \mathrm{~N}_{3}{ }^{\bullet}$ or (maybe) diazidyldiazenes.

In the gas-phase or in nonpolar solvents, addition of $\mathrm{N}_{3}{ }^{-}$to $\mathrm{N}_{5}{ }^{+}$might produce diazidyldiazenes. These are sufficiently stable to be isolated at low temperatures, provided the Gibbs free energy of reaction can be dissipated before it destroys the molecule. Because the free energy of reaction is $\sim 150 \mathrm{kcal} /$ mol in the gas phase, a reaction in solution is the only practical approach. In solution, the oppositely charged ions gain kinetic energy that is transferred to solvent molecules, which are pushed out of the way. A polar solvent will stabilize the reactants more than the product, further reducing the energy that needs to be dissipated.

Unfortunately, from the point of view of high energy density matter, a dissociation barrier of $19 \mathrm{kcal} / \mathrm{mol}$ is at least $10 \mathrm{kcal} /$ mol lower than needed. Only in a solid-state structure, stabilized by a large lattice energy, is there any likelihood of stabilizing $\mathrm{N}_{5}{ }^{+}$and $\mathrm{N}_{3}{ }^{-}$as an ion pair. Our gas phase calculations, though, suggest that transfer of an electron without covalent bond formation, most likely leads to dissociation of the N_{5} unit. However, the top-on approach of $\mathrm{N}_{3}{ }^{-}$to $\mathrm{N}_{5}{ }^{+}$might well lead to octazole or octa-azapentalene. ${ }^{2 \mathrm{a}, \mathrm{c}-\mathrm{e}, 3 \mathrm{a}, 4}$ Another fascinating question analogous to $\mathrm{N}_{5}{ }^{+}+\mathrm{N}_{3}{ }^{-}$is a potential N_{10} species formed from $\mathrm{N}_{5}{ }^{+}$and the pentazole anion, ${ }^{21} \mathrm{~N}_{5}{ }^{-}$. Though the pentazole ring exists in organic species like phenyl-pentazole, ${ }^{22}$ it is surprisingly unknown as an inorganic species lika NaN_{5} or $\operatorname{Mg}\left(\mathrm{N}_{5}\right)_{2}$. However, extensive calculations support its existence as another potential HEDM candidate. ${ }^{23}$

Acknowledgment. This work was supported by the US Air Force Office of Scientific Research under Grant No. F49620-98-1-0477. S.F. wishes to thank Dr. Marcel Nooijen for valuable advice on using the DIP-STEOM-CCSD code.

Supporting Information Available: Vibrational frequencies of minima, natural localized molecular orbitals, overlapweighted NAO bond orders, and absolute energies are presented. This material is available free of charge via the Internet at http:// pubs.acs.org.

References and Notes

(1) Octaazacubane: (a) Lauderdale, W. J.; Stanton, J. F.; Bartlett, R. J. J. Am. Chem. Soc. 1992, 96, 1173-8. (b) Leininger, M. L.; van Huis, T. J.; Schaefer, H. F., III J. Phys. Chem. A 1997, 101, 4460-4. (c) Chen, C.; Shyu, S.-F. Int. J. Quantum Chem. 1999, 73, 349-56. (d) Engelke, R. J.

Am. Chem. Soc. 1993, 115, 2961-7. (e) Engelke, R. J. Org. Chem. 1992, 57, 4841-6. (f) Trinquier, G.; Malrieu, J.-P.; Daudey, J.-P. Chem. Phys. Lett. 1981, 80, 552-7. (g) Alkorta, I.; Elguerro, J.; Rozas, I.; Balaban, A. T. J. Mol. Struct. (THEOCHEM) 1990, 206, 67-75.
(2) Octaazacubane and other minima: (a) Leininger, M. L.; Sherill, C. D.; Schaefer, H. F., III J. Phys. Chem. 1995, 99, 2324-8. (b) Tian, A.; Ding, F.; Zhang, L.; Xie, Y.; Schaefer, H. F., III J. Phys. Chem. A 1997, 101, 1946-50. (c) Gagliardi, L.; Evangelisti, S.; Roos, B. O.; Widmark, P.-O. J. Mol. Struct. (THEOCHEM) 1998, 428, 1-8. (d) Glukhovtsev, M. N.; Jiao, H.; Schleyer, P. v. R. Inorg. Chem. 1996, 35, 7124-33. (e) Ghimarc, B. M.; Zhao, M. Inorg. Chem. 1996, 35, 3289-97.
(3) Rearrangements of octaazacubane: (a) Gagliardi, L.; Evangelisti, S.; Widmark, P.-O.; Roos, B. O. Theor. Chem. Acc. 1997, 97, 136-42, (b) Evangelisti, S.; Gagliardi, L. Il Nuovo Cimento D 1996, 18, 1395-405. (c) Engelke, R.; Stine, J. R. J. Phys. Chem. 1990, 94, 5689-94.
(4) Rearrangements of other N_{8} molecules: (a) Nguyen, M. T.; Ha, T. K. Chem. Ber. 1996, 129, 1157-9. (b) Chung, G.; Schmidt, M. W.; Gordon, M. S. J. Phys. Chem. A 2000, 104, 5647-50.
(5) Christe, K. O.; Wilson, W. W.; Sheehy, J. A.; Boatz, J. A. Angew. Chem. 1999, 38, 2004-9.
(6) We use the Z / E notation, which is a generalization of the familiar cis/trans notation applied to double bonds, to describe the shape of the conformers. Both $\mathrm{N}-\mathrm{N}$ bonds adjacent to the central double bond in diazidyldiazene show predominantly σ bonding, but π-delocalization effects usually keep these molecules planar. To stick with one type of description, we label these conformations as Z or E, too. Gauche conformations in nonplanar molecules are designated " g ", whereas dihedral angles close to 90° are represented by " p ".
(7) White, C. A.; Kong, J.; Maurice, D. R.; Adams, T. R.; Baker, J.; Challacombe, M.; Schwegler, E.; Dombroski, J. P.; Ochsenfeld, C.; Oumi, M.; Furlani, T. R.; Florian, J.; Adamson, R. D.; Nair, N.; Lee, A. M.; Ishikawa, N.; Graham, R. L.; Warshel, A.; Johnson, B. G.; Gill, P. M. W.; Head-Gordon, M. Q-Chem, version 1.2; Q.-Chem, Inc.: Pittsburgh, PA 1998.
(8) ACES II is a program product of the Quantum Theory Project, University of Florida. Authors: Stanton, J. F.; Gauss, J.; Watts, J. D.; Nooijen, M.; Oliphant, N.; Perera, S. A.; Szalay, P. G.; Lauderdale, W. J.; Kucharski, S. A.; Gwaltney, S. R.; Beck, S.; Balková, A.; Bernholdt, B. E.; Baeck, K. K.; Rozyczko, P.; Hober, C.; Bartlett, R. J. Integral packages included are VMOL (Almlöf, J.; Taylor, P. R.); VPROPS (Taylor, P. R.); ABACUS (Helgaker, T.; Jensen, H. J. A.; Jørgensen, P.; Olsen, J.; Taylor, P. R.).
(9) Nooijen, M.; Bartlett, R. J. J. Chem. Phys. 1997, 107, 6812.
(10) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007. Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6769.
(11) Tobita, M.; Bartlett, R. J. J. Phys. Chem. A 2001, 105, 4107.
(12) Becke, A. D. J. Chem. Phys. 1992, 96, 2155. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1998, 37, 785.
(13) We are aware of the fact that reactions involving homolytic bond breaking can require multireference methods for an accurate description. We nevertheless chose to search all transition states with B3LYP, because previous experience indicates that it works.
(14) Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO 4.0.; Theoretical Chemistry Institute: University of Wisconsin, Madison, WI, 1996.
(15) Thermodynamic data are calculated based on statistical thermodynamics. STTHRM uses the rigid rotor, harmonic oscillator, and ideal gas approximations. Effects of nuclear spin on the rotational symmetry factor are ignored. Internal rotations are treated as vibrations. The electronic partition function is assumed unity. The program is available upon request from the RJB group.
(16) We abstain from using the name azidopentazole, used in previous publications, because the azidyl group is formally uncharged and the partial atomic charges sum up to only 0.14 .
(17) Kucharski, S. A.; Watts, J. D.; Bartlett, R. J. Chem. Phys. Lett. 1999, 302, 295.
(18) Overlap-weighted NAO bond orders of reference molecules: $D_{\infty h}$ $\mathrm{N}_{2}(1.88), C_{S} \mathrm{Me}-\mathrm{N}_{3}(1.28,1.64), C_{2 h} \mathrm{Me}-\mathrm{N}=\mathrm{N}-\mathrm{Me}(1.29), C_{2 h} \mathrm{Me}_{2} \mathrm{~N}-$ NMe_{2} (0.76).
(19) Gagliardi, L.; Evangelisti, S.; Barone, V.; Roos, B. O. Chem. Phys. Lett. 2000, 320, 518.
(20) Illenberger, E.; Comita, P.; Braumann, J. I.; Fenzlaff, H.-P.; Heni, M.; Heinrich, N.; Koch, W.; Frenking, G. Ber. Bunsen-Ges. Phys. Chem. 1985, 89, 1026.
(21) Ferris, K. F.; Bartlett, R. J. J. Am. Chem. Soc. 1992, 114, 8302. Perera, S. A.; Bartlett, R. J. Chem. Phys. Lett. 1999, 314, 381-7.
(22) Huisgen, R.; Ugi, I. Chem. Ber. 1957, 90, 2914. Wallis, J. D.; Dunitz, J. D. J. Chem. Soc., Chem. Commun. 1983, 16, 910-1.
(23) Bartlett, R. J. Chem. Ind.-London 2000, 4, 140-3. Structures and energies of polynitrogen and $\mathrm{N}_{x} \mathrm{H}_{y}$ molecules and their spectroscopic characteristics: http://www.qtp.ufl.edu/~bartlett/polynitrogen.doc.gz and http://www.qtp.ufl.edu/~bartlett/hydrazine.doc.gz.

[^0]: * To whom correspondence should be addressed. E-mail: fau@qtp.ufl.edu. E-mail: bartlett@qtp.ufl.edu. Fax: (352) 392-8722.

[^1]: ${ }^{a} 2-1-6-7=42.3^{\circ} .{ }^{b} 2-1-6-7=57.3^{\circ} .{ }^{c} 2-1-6-7=83.5^{\circ}$. ${ }^{d} 2-1-6-7=79.2^{\circ} .{ }^{e} 2-1-6-7=85.1^{\circ} .{ }^{f} 2-1-6-7=91.4^{\circ}$.

